Weakly Chained Matrices, Policy Iteration, and Impulse Control

نویسندگان

  • P. Azimzadeh
  • Peter A. Forsyth
چکیده

This work is motivated by numerical solutions to Hamilton-Jacobi-Bellman quasivariational inequalities (HJBQVIs) associated with combined stochastic and impulse control problems. In particular, we consider (i) direct control, (ii) penalized, and (iii) semi-Lagrangian discretization schemes applied to the HJBQVI problem. Scheme (i) takes the form of a Bellman problem involving an operator which is not necessarily contractive. We consider the well-posedness of the Bellman problem and give sufficient conditions for convergence of the corresponding policy iteration. To do so, we use weakly chained diagonally dominant matrices, which give a graph-theoretic characterization of weakly diagonally dominant M-matrices. We compare schemes (i)–(iii) under the following examples: (a) optimal control of the exchange rate, (b) optimal consumption with fixed and proportional transaction costs, and (c) pricing guaranteed minimum withdrawal benefits in variable annuities. We find that one should abstain from using scheme (i).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly Chained Matrices and Impulse Control

This work is motivated by numerical solutions to Hamilton-Jacobi-Bellman quasivariational inequalities (HJBQVIs) associated with combined stochastic and impulse control problems. In particular, we consider (i) direct control, (ii) penalized, and (iii) explicit control schemes applied to the HJBQVI problem. Scheme (i) takes the form of a Bellman problem involving an operator which is not necessa...

متن کامل

Error bounds for linear complementarity problems of weakly chained diagonally dominant B-matrices

In this paper, new error bounds for the linear complementarity problem are obtained when the involved matrix is a weakly chained diagonally dominant B-matrix. The proposed error bounds are better than some existing results. The advantages of the results obtained are illustrated by numerical examples.

متن کامل

Optimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics

In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...

متن کامل

Inequalities for the minimum eigenvalue of M-matrices

Let A be a nonsingular M -matrix, and τ(A) denote its minimum eigenvalue. Shivakumar et al. [SIAM J. Matrix Anal. Appl., 17(2):298-312, 1996] presented some bounds of τ(A) when A is a weakly chained diagonally dominant M -matrix. The present paper establishes some new bounds of τ(A) for a general nonsingular M -matrix A. Numerical examples show that the results obtained are an improvement over ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016